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J .  Phys. A: Math. Gen. 20 (1987) 1045-1063. Printed in the U K  

Biorthogonal systems for SU, 3 SU, X SU,, SU,, 3 SO,, and 
Sp, 3 U, and analytical inversion symmetry 

Sigitas AliSauskas 
Institute of Physics, Academy of Sciences of the Lithuanian SSR, Vilnius 232600, USSR 

Received 18 February 1986, in final form 1 July 1986 

Abstract. Analytical inversion symmetry of the biorthogonal systems of SU, 2 SU2 x SU2,  
SU, 3 SO, and Sp, 3 U2 bases for two-parametric (covariant and mixed tensor) irreducible 
representation is discovered. This symmetry relates the dual isoscalar factors or resubducing 
coefficients. It allowed us to invert, by means of a special analytical continuation procedure, 
the non-orthogonal isofactors of SU, 3 SO,, for couplings (p0)  x (09)  to (AOp) and (p,O) x 
(p,O) to (Avo), as well as the resubducing coefficients (transformation brackets) for 
expansion of the SU, 3 SO3 Elliott basis states and Sp, 3 U2 Smirnov and Tolstoy basis 
states in terms of the corresponding canonical basis states. New expressions for bilinear 
combinations of SU, 3 SO, special isofactors are obtained. Expansion of SU, canonical 
basis states in terms of SUS 3 SO, Elliott states is found. Isofactors for coupling of two 
Elliott states are given. 

1. Introduction 

The concept of biorthogonal systems turned out to be rather an effective tool for 
consideration of different realisations of the non-canonical bases in the case of the 
multiple irreducible representations (irreps) of subgroups (see, e.g., AliSauskas 1978a, b, 
1983c, 1984). It allows us to simplify considerably many operations of the Wigner- 
Racah algebra for the non-orthogonal basis states with multiplicity labels, especially 
for calculations needed in nuclear theory. 

The biorthogonal system of non-canonical bases for the chain of the groups G 2 H 
in the case of certain classes of irreps is formed by the two complete collections of 
the basis states 17,) and I v b )  of the same irreps of G and H with 

(1.1) 

where a and b are the dual multiplicity labels. The arbitrary vector of this subspace 
may be expanded as follows: 

(1.2) 

( 70 I 7 b ,  = Sab  

I r c ) = C  ( 7 6  1 & ) 1  V h ) = C  ( 7 ] ' 1 5 c ) l  T)a)* 
b a 

The analytical biorthogonal systems may be constructed by means of the dual 
resubducing coefficients (transformation brackets, cf AliSauskas 1978a, 1983c, 1984) 
taking into account that the isofactor of the coupling coefficient for the chain G 2 H 
coincides with the resubducing coefficient ( RC) for the chains 

G x G 3 G  
U U 

H x H 3 H .  
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These dual resubducing coefficients (particularly the isofactors) are usually constructed 
in two complementary ways: the integral one (leading to some bilinear combinations 
of the orthonormal RC) and the differential one (associated with the solution of a 
discrete boundary value problem for RC). In general the resubducing coefficients are 
considered for the chains 

G I H  G I F i  
u u  or u u  
G' 2 H' G2H 

(1.4) 

where for the chosen classes of irreps only the restriction G I H is non-multiplicity-free. 
Let us denote here by A, p, j ,  m, A and M the irreps of G, H, G', H', and R, 
respectively, and by w the multiplicity label of the orthogonal states of p in A. 

The' bilinear combinations of RC 

or 

( 1 . 5 ~ )  

(1.56) 

with one-to-one correspondence between a' and JG or between d and AG appear in 
the case of the non-canonical bases of the integral (projected or polynomial) type. 
(The explicit form of w here is unnecessary and unimportant.) The parameters of 
irreps f i  or A, fi in the first factors on RHS of (1.5a) and (1.56) are chosen as being 
linearly dependent on A and p in such a way that the non-orthonormal basis formed 
with the help of these weight coefficients is complete when the possible superfluous 
vectors are eliminated with the additional inequalities. The overlaps of the non- 
orthonormal states may be expressed as particular cases of (1.5a) or (1.56) (i.e. the 
bilinear combinations of the weight coefficients). The bilinear combinations of the 
weight coefficients of the different types, for example, 

allow us to expand the states of the first type (labelled by AA?) in terms of the states 
dual to those of the second type (labelled by JG) or vice versa. The resubducing 
coefficients for expansion of the states of a basis C in terms of the states of a basis D 
may be denoted (see § 5 )  as the elements of the matrix C D  instead of the brackets 
(C I 6), where the dual to D is denoted by 6. 

Taking into account that the labels w in (1.5a), (1.56) and (1.6) may be replaced 
by a couple of dual multiplicity labels (a subscript and a supercript) the states of the 
differential non-canonical bases (labelled by a superscript) may be obtained by means 
of non-orthonormal RC which satisfy the standard boundary conditions 

( 1 . 7 ~ )  (A "pm 1 Ajm) = S a , , j m  

or 

(AAaP I A M p ) =  Sa,,, (1.76) 

forjm or A M  which are linearly dependent in the same way as JG or (and which 
satisfy some additional inequalities when the superfluous states with a subscript appear). 
Of course, the weight coefficients of the dual bases form mutually inverse matrices. 
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The dual isofactors and resubducing coefficients were constructed hitherto in 
different mutually independent ways when the expressions obtained were checked 
(sometimes after transformation with some triangle matrix inverse to one of the (1.6) 
type) for satisfaction of the first or second criterion. 

Otherwise (cf AliSauskas 1984) the dual coupling coefficients (respectively, isofac- 
tors and resubducing coefficients) may be considered as the direct and inverse expansion 
coefficients. Hecht and Suzuki (1983) obtained, taking into account such consider- 
ations, two classes of expressions for some multiplicity-free isofactors of SU, 2 SO,. 
Of course, the dual coupling coefficients coincide numerically in multiplicity-free cases. 

AliSauskas (1984)t used the polynomial states of the mixed tensor irreps ( h o p )  of 
U, restricted to 0, as the generating functions of the bilinear combinations of isofactors 
of SU, 3 SU, x SU2 and SU, 2 SO, for coupling (PO) x ( 0 4 )  to ( h o p ) .  An alternative 
approach-the use of the polynomial direct product states of (pi)) x (04)  (coupled in 
frames of SO, Wigner-Racah algebra) in the role of the generating functions-allowed 
us to obtain a new expression for the isofactors of dual type, which couple to the 
stretched (S) states of SU, SO,, and satisfy the corresponding boundary condition. 
Although this expression is slightly more complicated than those derived by AliSauskas 
(1983a) (see 0 3 of AliSauskas 1984) it is more symmetric. In addition it is similar to 
the above mentioned expression of AliSauskas (1984) for bilinear combinations of 
isofactors. 

It turned out that these two expressions for dual isofactors may be obtained (up 
to an elementary multiplier) each from another by means of special substitution of 
the non-vanishing parameters (i.e. by means of a discrete analytical continuation 
procedure). 

This new class of relations between the dual isofactor or other resubducing 
coefficients with analytical multiplicity labels may be associated with the transition to 
the inverse element of a group in view of the fact that the matrix elements of group 
generators after these substitutions turn into transposed ones with opposite sign, i.e. 
into the matrix elements of dual basis (with some renormalisation factors). Also the 
proper values of the Casimir operators turn into those corresponding to contragredient 
irreps. 

In this way the analytical inversion symmetry of the dual resubducing coefficients 
or isofactors was introduced (AliSauskas 1986b). It is a generalisation of the mirror 
reflection symmetry$ associated with the substitution j -f - j  -f 1 and considered by 
Jucys et a1 (1965) and Jucys and Bandzaitis (1965, 1977) in the case of SU2 and 
introduced for the non-simple-reducible compact Lie groups by AiiSauskas et a1 ( 1967) 
and AliSauskas and Jucys (1967). Although it was demonstrated that the substitutions, 
defined as a mirror reflection, induce the contragrediency transformation without any 
phase factor, there was no more essential application of the mirror reflection symmetry 
in the Wigner-Racah calculus of the non-simple-reducible Lie groups. (This statement 
does not concern the substitution group technique of Aliiauskas and Jucys ( 1967) 

t In addition to the corrections given in the corrigendum (1985) of AliSauskas (1984) it is necessary to 
change - 5  to -3 in the exponent of 2 and to include z !  in the denominator of (6.61, to exchange A, and 
8, in the fourth line from the bottom of p 2912, to replace W,(p ,  I , )  by W , , ( p , ,  1,) in (6.9), to change the 
last double factorial [. . .I!! to a simple one in the numerator of (7.1), to change the sign of 1; to plus in the 
exponent of 2 and replace the corresponding factors by ( L , + L 2 + n - 4 - 2 f ) ! ! / ( L , + L , + n - 4 + 2 k ) ! !  in 
(7.3). Some other errata are also corrected in AliSauskas (1986a). 
$This term seems to be inappropriate (contradictory) in view of our investigation, as well as its former 
interpretations. 
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used, incidentally, by AliSauskas (1978a, b, 1984).) The difficulties arose because the 
mirror reflection symmetry was determined only for the canonical basis states of the 
completely parametrised irreps and the operations with the non-orthogonal multiplicity 
labels were indefinite. 

Otherwise, the analytical inversion symmetry includes the relations between the 
non-orthonormal resubducing coefficients for the direct and inverse expansion and, 
thus, the relations between the biorthogonal systems of isofactors or other transforma- 
tion coefficients as defined by (1.5)-( 1.7) and represented in the form of the factorial 
sums. I t  should be noted that in the case of the overcomplete bases the analytical 
inversion, as a rule, gives the expansion in terms of all the states including linearly 
dependent ones (cf conception of the pseudoisofactors (AliSauskas 1983c, 1984)). 

The substitution of analytical inversion for the parameters of irreps A, p, j, m, A, 
M are chosen between such compositions of the usual contragrediency transformation 
with the elements of the substitution group which leave invariant the zero-valued 
parameters. Let us note that the substitution groups of irreps of the classical Lie groups 
have been found (cf AliSauskas and Jucys 1967, AliSauskas 1983c) after examination 
of the invariancy properties of the characters of irreps (cf Weyl 1925, 1926, 1939). 
They include the permutations of the partial hooks (cf Baird and Biedenharn 1964) 
for U,,, SO, and Sp,,, as well as the reflections of the hooks for SO,, and Sp,,, (see 
(9)-( 11) of AliSauskas 1983c) together with their compositions. The substitution group 
is isomorphic to the corresponding Weyl group of the weight space. 

The typical applications of the substitution group are being developed for the 
isofactors and recoupling coefficients ( AliSauskas 1978a, b, 1984). Since in these cases 
for each coupling the one of two irreps to be coupled is fixed, the equivalent substitutions 
(particularly the hook permutations) should be applied to the remaining two irreps 
(including the resulting one). Therefore the operations of the substitution groups may 
be associated with the Weyl operations in the Biedenharn er a1 (1967, 1985) type 
pattern of canonical tensor operator (corresponding to the fixed irrep). Similarly the 
substitution j ,  + - j ,  - 1 is associated with the reflection of k in the Clebsch-Gordan 
coefficients of SU, 

(cf (17.11) of Jucys and Bandzaitis 1977). 
The contragredient irreps of U,, are usually obtained after reflection and lexical 

ordering of the parameters of the Young tableaux, when for SOdntZ only the reflection 
of the ( 2 n  + 1)th parameter of irreps is needed. In the remaining (SO,,, 0, and Sp,,) 
cases the contragredient irreps are equivalent to the starting ones. 

As a rule the substitution of analytical inversion includes the maximum of reflections 
and the minimum of permutations of the hooks corresponding to the non-zero-valued 
parameters of all the irreps. Although the substitutions of analytical inversion for the 
multiplicity labels 6 or A, A? resemble those for the remaining parameters, i t  is 
generally impossible to relate them to the invariance of the proper values of the Casimir 
operators corresponding to these labels. ( I t  is obvious because these Casimir operators 
do not commute with the remaining ones.) The substitution group and the complemen- 
tary group techniques allowed us to base the behaviour of the multiplicity labels in 
many cases when the properties of the matrix elements of the group generators may 
not be considered immediately. Since no one irrep remains untouched it is impossible 
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to use the analytical inversion for the canonical unit tensor operators as defined by 
Biedenharn er a1 (1967, 1985). 

In  this paper, the analytical inversion symmetry is demonstrated first of all on 
special isofactors of SU, 2 SO, considered by AliSauskas (1984). This symmetry 
allowed us to obtain new expressions for the bilinear combinations of isofactors which 
couple the irreps (PO), x(Oq) ,  to (AOp), and (p,O), x ( P ~ O ) ~  to (AVO), as well as for 
the resubducing coefficients of Sp, 2 SU2 x SU2 to Sp, 2 U,. These new expressions 
contain the triple sums instead of the fourfold sums presented by AliSauskas (1984). 

The new expressions for the isofactors may be used for SU3, SUI and SU, irreducible 
decompositions of the nuclear Hamiltonian and the nuclear density matrix as well as 
for constructing collective basis functions in a two-dimensional case (for references 
see AliSauskas 1984, 1986a). The whole coupling coefficients of the symmetric irreps 
of SU, in SO, 2 SO,- ,  3 SO,-* 2 .  . . 2 SO, basis may be obtained taking into account 
also the results by NorvaiSas and AliSauskas (1974)t or AliSauskas (1987). 

The expansion coefficients of the canonical basis states of SU3 in terms of the 
Elliott (1958) states may also be obtained by means of the analytical inversion of the 
transformation brackets by Asherova and Smirnov ( 1970). Simultaneously the 
expansion of the dual to the Elliott basis states in terms of the canonical basis states 
is found. This result allowed us to obtain an expression for SU, 2 SO, isofactors, 
which couple two Elliott states to the resulting Elliott state. I t  should be noted that 
the known expressions (see, e.g., Asherova and Smirnov (1970) or Castilho-Alcaras 
and Vanagas (1987)) allow us to expand the direct product of the Elliott states in terms 
of the dual to the Elliott states or to couple the dual of the Elliott states to the Elliott 
states (cf AliSauskas 1978a). 

2. New solution of the boundary value problem for coupling (pO)x(Oq)  to (AOy) and 
analytical inversion of SU,, 3 SO,, isofactors 

Let us take the same elementary permissible diagrams ( E P D )  which were used by 
AliSauskas (1984) for construction of the polynomial states of the mixed tensor irreps 
( h o p )  of SU, restricted to SO,. The direct product state of SU, for the representation 
(PO) x ( 0 4 )  restricted to the representation I ,  x 1, of SO, and coupled in frames of SO, 
to the irrep[ L , L 2 ]  may be constructed with the help of the projection operators of the 
complementary group Sp(2, R )  x Sp(2, R )  (see (4.3) of AliSauskas 1986a). For this 
purpose the normalised monomial 

(2.1) 
(representing a state of the definite irreps (A’Op’) = ( t ( l l  - l2  + L ,  + L2) ,  0,  f ( 1 2  - 1, i- L I  + 
L , ) )  of SU, and [ L , L , ]  of SO,) should be acted on with the operators P$,\:)(v) and 
P$,\:)(6). An expansion in all EPD introduced by AliSauskas (1984) appears after 
transferring the annihilation operators through the creation operators. A simple isofac- 
tor needs to be used for renormalisation of the first direct product state obtained. 

[ f ]  ;;, 17 I$- f>t L ,  - L2 2 ( 1, I ,  + L ,  - L2  I 1 N (  7 7 ~ ) ( / , + / > - L , - L , I I ?  
6hG- 

Now the monomials of the type 

( 77 77 1 ( 66) [ 775 1 :; 17 ;I; L z  6 k  L2 

* Some errata of NorvaiSas and AliSauskas (1974), AliSauskas (1978a, b, 1982b, 1 9 8 3 ~ )  and AliSauskas and 
NorvaiSas (1979, 1980) are corrected in AliZauskas ( 1 9 8 6 ~ )  (see also AliSauskas and NorvaiSas 1980). 
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may be expanded in terms of the coupled SU, 3 SO,, states. The expansion coefficients 
(with the corresponding normalisation factors are the particular cases with I {  + I ;  = L ,  + 
L, of special isofactors considered by AliSauskas (1983a) (see 9 3 of AliSauskas 1984) 
which are multiples of the 3F2( 1) series and, therefore, they may be transformed to 
the more convenient form by the methods of Jucys and Bandzaitis (1965, 1977) used 
(see $9 13 and 14) for the Clebsch-Gordan coefficients of SU2 (cf 9 4.3 of Slater 1966). 
At last, the elementary action with the operator ( ~ 5 ) ‘  allows us to represent the general 
direct product state as an expansion in terms of the coupled polynomial (B) states. 
In such a way the following new expression for the special isofactors of SU, 3 SO,, 
considered in 9 3 of AliSauskas (1984) was obtained: 

2 ~ ~ 1 0 ~ 2 0 ~ ~ ~ l ~ 2 1  1 

( ( 2IlO + n - 2) ! ! ( 212, + n - 2) ! ! 

= [ ( p - A ) ! ( A  + p + n - 1) ! ( A  + + n - 1) ! (21, + n - 2)(2I2 + n - 2) 

x (2L1 + n - 2)!! (2L2 + n - 4)!! ( L ,  + L2 + n - 3)! ( L ,  - lIO)!  ( L ]  - I,O) !] I’2 

2p+q-I,-12+2L2+n-3 

( -  l)J+a+P+z a + p - U - z  2 c W’,(A, [lo) W’,(P, f 2 0 )  

W,( p ,  I,) W,( q, 4) r ,u,p,u z! (a - z)  ! ( p  - z)! (I, + I2 - L ,  + L2 + n - 4 - 2z)!! 
X 

(21, - 2 a  + n - 4)!! (21, - 2p  + n - 4)!! [$( p - I,) + a]! 
[ ; ( I ,  - f ,+ L ,  - L,) - a + z]![;(12- I, + L ,  - L,) - p  + z]![i( I, + f,- L ,  - L2) - Iy -PI! X 

[ $ ( q  - f2)+p]![f(ll - I,+ L ,  - L2) - a +P]![$(12 - I, + L ]  - L2)  + a -PI! 
X 

[$(A + p  + p +  4 -  I ,  - I , +  L , +  L2)+ CY + p  + n - l]! u ! [ $ ( p  - A  - I ]  + / l o ) +  + U ] !  

( A  + / ~ + L l - L z + n - 2 + 2 ~ ) ! !  
X 

[ i ( q  - 12-p + f2o)+p -u]![$(A - p +  / l o+  I , )  - L2- + U]!  

x { [ $ ( p  -q+120+I*)-L2-p+u]!}-~. (2.2) 
Here Ilo+ It,= L ,  + L2 (for n = 3, L2 = 0 or l ) ,  

W,( p ,  I )  = [( p - I ) ! !  ( p  + I + n - 2)!!]1’2 

W’,( p, I)  = [( p + I +  n - 2)!!/( p - I)  !!I 1’2 

In phase factors we use for n = 3 

+ = ; ( I ,  + 12 - L ,  - L2) +’ = f( I ,  - 12 - L ,  + L, )  
(I=*’=() otherwise. 
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The isofactors (2.2) couple to the states of the stretched ( S )  basis and are equal to 
6,,,,o for p = A, q = p, lI  + I ,  = L ,  + L, .  Although equation (2.2) contains a fourfold sum, 
some particular cases of it are more convenient than the corrected equation (3.4) of 
AliSauskas (1984) (e.g. for the small values of p - A  or L ,  - L 2 ) .  In addition equation 
(2.2) resembles (2.8) of AliSauskas (1984). It turned out that both these expressions 
for dual isofactors satisfy the following relation of analytical continuation: 

0 0 )  (b.) ( A b )  
110 120 4 L l L 2 1  

- - ( - ~)P-A+(L,+L,-I , -~,) /~  

( A  +p+n-1)(21 ,0+n-2) (21 ,0+n-4) (2120+n-2)(2120+n-4)  
((2L,  + n -2) (2L2+ n -4) (Ll  + L,+ n - 3 ) ( A  + llo+ n - 2 ) ( p  + l zO+ n - 2 )  

(-A - n + l ,O, - p  - n + l )s  
[ ! - [ I n  + 2  - 1,- n + 2  ( - I l o -  n + 3 ,  - 120- n +3)[  - Lz - n + 3 ,  - L1 - n + 3 ]  

n,O) (0 ,  - q - n )  

(2.7) 
Here the substitutions of the parameters of irreps correspond to the contragrediency 
transformation but the multiplicity labels ( llo, lZ0) satisfy another regularity. 

The analytical continuation of discrete functions in this paper acquires a wider 
sense than earlier (in the substitution group or complementary group technique). The 
separate summation intervals of the expresssions were fixed in former cases of analytical 
continuation (cf AliSauskas 1984). Here the restrictions of the summation intervals 
are changing essentially. Some properties of the analytical inversion procedure are 
discussed in appendix 1. 

In order to base the relation of analytical continuation between the direct and the 
inverse matrices, the properties of the matrix elements of the group generators should 
be examined. The corresponding matrix elements of SU, generators for the Draayer 
(1970) projected basis are found by AliSauskas and NorvaiSas (1979) (equations (2.6) 
and (2.7)). The linearly dependent states which have appeared should be expanded 
with the help of (5.1) and (5.7) of AliSauskas and NorvaiSas (1979). The explicit 
expressions for matrix elements in limits of the complete Draayer basis states are rather 
bulky even for irreps of the type (AOp).  Taking into account the proportionality of 
the Draayer and stretched states for the irreps (AOp) (see the factor in front of the 
sum on the RHS of (3.3) of AliSauskas and NorvaiSas (1980)), the matrix elements of 
the generators in the basis S may be found. These matrix elements turn into transposed 
ones (with the opposite sign and the corresponding renormalisation factors) after 
substitutions (2.7) (used together with the correspondence (2.6) and (2.7) of AliSauskas 
(1984) and K ,  = S, KT = j l o - j 2 0 ) .  Then they become the matrix elements of the 
renormalised dual basis. 

In this way relation (2.7) is associated with an outer automorphism of the group 
which transforms an element of the group into an inverse one. Together with the 
behaviour of the biorthogonal system of isofactors, this is the reason the new symmetry 
qualifies as the analytical inversion symmetry. 

The substitution group technique allows us to obtain the relations for analytical 
inversion for isofactors which couple ( plO) x ( p 2 0 )  to ( A V O )  in the case of the dual 
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bases A and A or Q and 0 as defined by AliSauskas (1984). For demonstration of 
the usefulness of the analytical inversion symmetry the expression (2.46) of AliSauskas 
(1983a) will be needed, which may be written as follows: 

n - 2)(2I2 + n-2)(  p - A ) ! 

1 
((21'+ ( A  +q+ n - l ) !  

- - ( - 1 ~ ~ p - A + J ~ - 1 , , ~ / ~ ~ ~ r + J , , - ~ , + ~ , + n - 3 ) / 2  

( A  + p + n - l ) !  (L1 + L2+ n -3)! (2L1 
X 

(21,o + n - 2) !! (2120 + n - 2)!! (I20 - L2) ! 

W,(p, 11) w x q ,  12) WL(A, 110) WXP, l20) 
[ f ( A  + P  LiL2) 

( -  l ) @ + " + z [ f ( p  - 120)+ U]![f(P+ L, + L2+ 1 2 ) +  n -3  - U ] !  

X 

u ! [ f ( p  - I , )  - u]!(p+ 1,  + n -2 -2u)!! U!( p - A - U  - U)! 

[f(  p - 1 , )  - U + z]![f(A -110)  + ~ ] ! [ f ( L l  - L2 - 1,  + 12)  + z]! 
X 

( q +  I,+ n -2-2u)!!z![f(l, - f 2 +  L ,  - L J  - z]![;(rlO- 120- I, + 1,) + z]! 

[f( p +  q+ L ,  + L2)+ n -3 - U - U]! 
X 

[ A  - f (  p + 11) + U + z]! 

It should be noted that the substitutions (6.1) and  (6.2) of AliSauskas (1984) applied 
to our equations (2.2) or (2.8) allows us to obtain new expressions for the isofactors 
which couple the states of representation ( p , 0 )  x ( p20) to antistretched (A) or quasi- 
stretched (Q) states of the irrep ( A V O )  of SU, restricted to SO,, similarly to § 6 of 
AliSauskas (1984). 

3. New expressions for bilinear combinations of special isofactors of SU, 2 SO, 

( - p +  L ,  + L,+ 12)+ n -2+ U + U]! Az U ! [f(p - 120) - U]!  [f( p +  Ll + L2+ 12)+ n -2+ U ] !  U !  [ f (  A - Il0) - U]!  
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[ f ( p - I , ) + u ] ! (  p + I l + n - 2 + 2 ~ ) ! ! ( p - A  +u+u)! 
X 

[+( p +  q +  LI  + L2) + n - 1 + U + U ]  ! ( p - A  +I,+ l20+ n - 2 + 2 ~  + 2 ~ ) ! !  

( q +  I,+ n - 2 + 2 u ) ! !  [+( L ,  - L2+ I ,  - I , ) + Z ] !  

z !  [+( L ,  - L2-  I ,  + 1 2 )  - z ] !  [;( p - I , ) +  U - z ] !  [f( I ,  - 12- I IO+ 120)+ z ] !  
X 

[+( p - A  + [ I -  110) + z ] !  
[f(  p +  I , )  - A  + U + z ] ! ( 2 I , +  n - 2 + 2 ~ ) ! !  

X (3 .1)  

which is an  alternative to (2.8) of Aliiauskas (1984) (cf Aliiauskas 1986b). Unfortu- 
nately, (2 .7)  applied to (3.4) of AliSauskas (1984) gives a divergent formula, as well 
as a substitution of analytical inversion 

PI + -PI - n P 2 +  - P 2 -  n A + - A - 2  v + - v - n + l  

I, + - I ,  - n + 2 

L , +  - L ,  - n  + 2  

1, + -1, - n + 1 

l2  + - I 2  - n + 2  

L 2 +  - L 2 - n  + 4  

1 2 +  - 1 2 -  f l  + 3 (3.2b) 

applied to (6.4) of AliSauskas (1984). The new expression for special isofactors (cf 
the corrected equation (7 .1)  of Aliiauskas (1984)) 

( 3 . 2 ~ )  

1 [ 1, 12 (12)[L,L21 
(PI@ ( P 2 0 )  

- - ( - )(p,-u+ll-f2)/2+$'2-(~-Ll+L2-IZ+ll+12+n-3)/2 

(21, + n -2)(21,+ n - 2 )  ( (PI - v )  ! ( p 2 -  U)! 

A ! (212+ n - 2 )  ! ! ( 2 L , +  n -4) ! ! ( L ,  -L2) ! ( 1 2 -  L* )  ! (L1+12+ n - 3 ) !  
(21, + fl-4)!! (2L2-k fl -4) !! 

"* 
) X 

Vn[2.4,5,61(1112; L1~5.2) Wn(p1, I I )  WL(A + v, L1- L2+12) 

W ~ ( p 2 , 1 2 ) W ~ ( v , I 2 ) [ f ( A  + L i - L 2 ) 1 !  
X 

( -  1)""[~( pl+  LI - L2- 1 2 )  - u ] ! [ f ( A  + V- L,+L2-12)+ V I !  
x c  

" , " , Z  U![+( v - j 2 ) -  U ] !  [+( p ,  + L ,  - L 2 -  I * )  - U - V I !  [+(PI - 1 1 )  - U ] !  

( p2 - v +  U + U )  ! (p2+ I,+ n - 2 + 2 u )  !!Et( p ,  - I , )  - U + z ]  ! 2' 
u !  ( P I  + I ,  + n - 2 - 2 u ) ! !  [f( p 2 - p ,  - Ll  + L2)+  U + U ] !  [ & ( I ,  + 12- L ,  - L,)  - z ] !  

X 

[f( p 2 -  v +  L ,  - L2 - I ,  +12)  + z ]  ! (21, + n -4- 2 z )  ! ! 
X 

z ! [ f ( L ,  -L2-  I ,  - 1 2 ) + 1 2 + ~ ] ! [ $ ( A  + p * - I , ) +  1 + u + z ] !  

x {( p 2 -  v +  I2+l2+ n -2+2u + 2 u )  ! ! [f( L ,  + L2+ I ,  + 1 2 )  + n - 3  - z ] ! } - '  (3 .3)  

is obtained from (3 .1)  by use o f  the substitutions (6.1) and (6 .2)  of Aliiauskas (1984). 
Otherwise, (3 .3)  is related by (3.2) to the new expression mentioned in $ 2  for the 
isofactors which couple to the antistretched (A) states. Special isofactors for coupling 
( A  + v, 0 )  x ( v 0 )  to ( A v o )  with I ,  - 12-= L1 - L2 are used as weight coefficients in the 
sense of ( 1 . 5 b )  for the basis A with the linearly independent states J 2 >  

v - L l + L 2 + S 0 + A 0 .  H e r e S o = O o r  l ,A,=Oor 1 s o t h a t A + v - L 2 - 6 , a n d  v - L z - A o  
are even. 
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The substitution ( 3 . 2 ~ )  together with 

applied to the corrected equation (6.9) of AliSauskas (1984) gives an alternative of the 
corrected equation (7.4) of AliSauskas (1984) 

- - ) ( p 2 - y - / 2 + i z ~ i z + ~ 2 - ( ~ , + ~ 2 + ~ , + ~ I + ~ - 3 ) / 2 + ~ 2  ( - 
( 2 I , + n - 2 ) ( 2 1 , + n - 2 ) 1 \ !  
V)! (p2  - V)! ( L l +  L,+ n -3)! 

w n  ( P 2 ,  /2)V n[5.71( I1 12; Ll L2) 

( - l)X+Y+Z[f(I, + I , -  L, - L,) + x + z ] ! [ $ (  p 2 -  v +  1 2 -  r2, + x + z]! 

( L ,  - L, - y ) !  ( p , +  L, + L, - I,+ n - 4 - 2x - 2 z ) ! !  
(21, + n - 2 + 2 x ) ! !  [f( p ,  - I , )  - z ] !  [f( I ,  - r2 - p 2  + v )  + X I !  

(L,+L,-A+n-4)!!  

X 
WL(Pi 11) WA(A + V, TI) WL( v, r2)  

x c  X 9 Y . Z  X ! Y !  Z !  [ $ ( p 2 -  1 2 )  - x ] ! ( L ,  + L2+ I ,  - I , +  n - 4 - 2 ~ ) ! !  

X 

[f( p ,  - v + I ,  + r,) - L,  - y ] !  
(( L1 L2 - A + n - 4 - 2 Z ) ! !  ( r 2  - ~ 5 2  - y ) !  [$( L1- L2 I , -  1 2 )  - y ] !  

( I ,  + I,+ L1- L,+ n - 2 + 2 x  - 2 y ) ! !  
X [f( p2 - v + I , -  r,) + z ] ! [ f ( A  + I ,  + I,) - L , + x  - y  + z + l]!  

x [ ( I ,  + I ,  + L ,  - L2+ n - 2 - 2 y ) ! ! ] - '  

( - l ) ' ( h  - L1 - LZ- n + 2 + 2 ~ ) ! ! / ( A  - LI- L2- n + 2 ) ! ! .  

(3.5) 

(3.6) 

if L, + L, - A + n -4 3 0. Otherwise the quantity in braces should be replaced by 

The weight isofactors for the basis Q differ from those for by the condition 
il + r, = L ,  + L2 with the parameters r, 2 L ,  - A +A,  for the linearly independent states 

It is clear that the old or the new expressions are more or less preferable in different 
situations because the regions of their polynomial representability are different (cf 
Castilho-AlcarPs and Vanagas 1987). 

of Q. 

4. Once more on the expansion of the projected basis of fivedimensional quasispin 

Equation (2.7) together with the substitutions (4.1) of AliSauskas (1984) allows us to 
find the analytical inversion of the projected basis for the reduction Sp, 3 U, introduced 
by Smimov and Tolstoy (1973). The parameters used by AliSauskas (1983b, 1984) need 
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to be substituted by 

K + - A - +  A +  - K  - +  T + - T - 1  MT+-MT 

v + - v  (Y + --Q + K - A  ( 4 . 1 ~ )  

I+-I- l  J-,-J-l M + - M  N + - N .  (4.lb) 

Analytical inversion of ( 3 . 2 ~ )  of AliSauskas (1983b), together with the usual symmetry 
relations, allowed us to write the following new expression for the resubducing 
coefficient: 

(::;A 1 f f  : F A T )  

K + A - I - J  ( 2 T +  l ) E ( K A a V T )  
( K  + A +  T +  1)!(2K -2A-20)! = S " . M - N S M + + N (  - 1) 

( 2 1 + 1 ) ( 2 J + l ) ( I - M ) ! ( J - N ) ! ( J +  N ) !  
(Z+ M ) ! ( K  + A -  I - J ) ! ( K  + A - I + J +  1)!(K + A +  I - J +  l)! 

X 

(2 K + 1) ! (2A) ! ( 2 K  + 2A + 2 ) !  ( K  - A + I - J )  ! 
( K  + A  + I + J + 2 ) !  ( K  - A  - I + J ) !  ( I  + J - K + A ) !  ( K  - A  + I + J + l ) !  

zz x ! ( I  - M - x)!  [ K - a - I - f (  T - M T )  + X I ! (  K + A  - I - N + x + z + l ) !  

X 

( - 1)x+y+2(2Z - x)!  ( K  + A  - I + J + x + l)! ( K  + A  - I - J + x + z ) !  

[ K - a - I + f (  T- M T )  4- X Z ] !  ( K  -t A 4- T +  Z 4- 1) ! (2K  - 212 - y ) !  
X 

z! ( J  + N - z ) ! [ A +  (Y - J  +;( T -  M T )  -I- z]!y! ( K  - A  + I - J  - y ) !  

( I  + J - K A + y ) !  [ K + - J +f( T +  M J )  - y ] !  
X (4.2) (2a - y ) ! ( I + J -  K + A - x + ~ ) ! ( ~ K +  T - I - J + x - y + z + l ) !  

where the notation of AliSauskas (1984) is used. Another alternative version of equation 
(4.2) of AliSauskas (1984) may be obtained by means of the analytical inversion of 
(3.2b) of AliSauskas (1983b). The weight coefficient in this case has the labels of the 
canonical basis states of Sp, f3 SU2 x SU2, f = K - a, j =  A +  a, h? = :( T +  V ) ,  fi = 

The analytical inversion of the projected Sp, f3 U2 states may be confirmed after 
examination of the matrix elements of group generators (Smirnov and Tolstoy 1973). 

f (  T - V ) .  

5. Analytical inversion for the Elliott SU3 3 SO3 states 

As was demonstrated by AliSauskas (1978a) the expansion coefficients of SU, f3 
SO, basis states E' dual to the Elliott states E +  in terms of the canonical (Gel'fand- 
Zetlin) basis states coincide with the expansion coefficients G E +  of the canonical (G)  
states in terms of the Elliott states: 

(5.1) 
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The SU, 3 U2 states here are labelled by the parameters 
1 Z = f( p - A )  -7  Y = m23 -i(m12 + m2*)  

I =t (m12-m22)  + ~ = m  I 1  -i( 2 m12+m22) (5.2) 

(mik are the Gel'fand-Zetlin parameters). The Elliott basis states E' and E -  are 
defined as 

(5.3a) 

(5.3b) 

where the extrema1 states of the canonical basis are taken on the RHS?. The overlaps 
of the E' states are given in the simplest form as (3.9)$ of AliSauskas (1982b). 

The generators of rank 2 of SU3 act on the Elliott states E' as follows (see (54) 
of AliSauskas (19834, cf Elliott (1958), Asherova and Smirnov (1973), De Meyer et 
a1 (1985)): 

m M '  ' I  
K 'L 'M '  (5.4) 

where 

= S K K  (1/J6)[2A + p + 3 + i L ' ( L ' +  l ) - ; L ( L + l ) ]  

- S ~ , K + , $ [ ( ~ - K ) ( ~ + K + ~ ) ] " ' - S K , K - ~ ~ [ ( ~ ( + K ) ( ~ - K + ~ ) ] " ~ .  
( 5 . 5 )  

The states of the dual basis E' may be defined by the boundary condition of the 
resubducing coefficients 

(5.6) 

f o r K > m a x ( L - A + S , A + S ) ,  M s m a x ( L - A + S , A + S ) , w h e r e S = O o r  l , A = O o r  1 
so that A + p  - L -  S and A - L -  A are even integers. According to (4.2) and (3.9) of 
AliSauskas (1978a), the E +  states may be expanded in terms of the Bargmann and 
Moshinsky (1960, 1961) states which in their turn may be expanded in terms of the 
canonical basis states. Otherwise, the canonical basis states may be expanded in terms 
of stretched (SI states and the latter in terms of the Elliott states (see (4.22) and (4.14) 
of Moshinsky et al (1975)). Thus, the expression for the resubducing coefficient (5.1) 
obtained in this way contains a sixfold sum. 

E + ( h p ,  bf ) G  - 
K L .  I d p  - $ M K  

It is easy to check that the matrix elements (5.4) after the substitution 

A + - A - 2  p + - g - 2  L + - L - l  M + - M  K + -K (5.7) 

t A new construction for the projected ( E )  bases of SU,, 3 SO,, in the case of two-parametric irreps (cf 
AliSauskas 1982b, 1984) is proposed by Petrauskas and Aliiauskas (1987). For the bases E, E,  A and Q, 
special isofactors now may be used as the weight coefficients instead of special RC of the chains SU, 3 SO, 3 
SO2 and SU, 2 Uz 2 SO2 of our  ( E )  case. 

One of two repeating factors on its R H S  should be omitted. 
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turn into the transposed ones (with a simple multiplier), i.e. into the matrix elements 
in dual basis. This fact, together with some additional reasoning, allowed us to suppose 
the following relation of analytical inversion (cf AliSauskas 1986b): 

+( -A-2 . -@-2; -M )G G($;?’“+=2[(A + l ) (A  +p+2) ]1 ’2 (2L+1) -1E-  K.-  L-I  ;-Z, - 1-1 (5.8) 

The expansion coefficients EL‘&M’G of the Elliott states in terms of the canonical 
basis states were found by Asherova and Smirnov (1970) (see (2.5) of AliSauskas 
(1978))f. Analytical continuation of this formula according to (5.8) gives the expansion 
of the canonical basis states in terms of all the E +  states of the overcomplete basis, 
the linearly dependent states being included. The latter may be expanded in terms of 
the independent states with the help of the equation 

(5.9) 

where 

) 1/2 ( -  l)(L-A+s-K’j/2 ( p  + K ’ )  ! ! ( p  - K ’ )  ! ! ( L  + K ’ )  ! ( L  - K ’ )  ! 
( p  + K j ! ! ( p  - K ) ! ! ( L +  K ) ! ( L -  K ) !  ( K  - K ’ ) ( K  + K ’ )  

2K’sK1-b(L-A + K  + S  - 2 ) ! !  
( L - A  + S  -K’ -2 ) ! ! (L-A + 6 + K f - 2 ) ! ! ( A  - L + K  -a)! !  X (5.10) 

Kamax(A+S,  L - A + S ) ,  K ‘ > A + S  (cf the corrected equations (4.4) and (2.8) of 
AliSauskas (1978)). 

Thus the following expression for the resubducing coefficients was obtained: 

( A  + Z -  I ) ! ( A  + Z + Z + l ) ! ( I  + f M ) ! ( p + K ’ ) ! ! ( L -  M ) !  
22L-M A ! ( A  + p  + 1 ) ! ( 1  - f ~ ) ! ( p  - K ’ ) ! ! ( L +  M ) !  

( -  1)z+X+Y22-”-?(2L- Z ) !  r :. 5 ;:I i) Z.” z ! ( L  - M - z) ! ( L  - K - z )  ! x ! y ! 
X 

[ f ( K ’ + p ) +  A - L+ z - y +  l ] !  
[f(  K ‘ +  M + p )  - L - 2 + z - x - y]  ! ( A  + Z - f M  + x + 1 )  ! 

X 

X {[f(p + M - K ’ )  - Z  + y  - ~ ] ! [ f ( p  - M + K ‘ )  - Z + x -y]!}l” 

[ i ( p  - K ’ )  + y]! ( I  - f M  + X )  ! 
[ i ( p  + K ’ )  - y]! ( I  + f M  - x) !  

f p  - Z  
$ K ‘ - y  f ( M - K ’ ) - x + y  4M-x (5.11) 

On the RHS the Clebsch-Gordan coefficients of SU2 appeared after the application of 
(17.1) of Jucys and Bandzaitis (1977) to (2.5) of AliSauskas (1978a) in which the 
Clebsch-Gordan coefficients have been extracted as well. 

+ The expression with a more convenient region of polynomial representability is given in Castilho-Alcaris 
and Vanagas (1987). 
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Of course, the above mentioned combination of (4.2) and (3.9) of AliSauskas (1978a) 
may be more convenient than (5.11) for special values of parameters (e.g. for small 
values of A or p ) .  However, (5.11) simplifies itself considerably for Z and I close to 
p /2 ,  e.g. on the RHS the terms with the parameters 

1 M - K ' I >  p - 2 2  (5.12) 

vanish. From (5.12) the additional selection rules for the coupling coefficients of 
SU3 3 SO3 may be obtained (see appendix 2). 

The overlap of the I?+ states (which coincide with the metric tensors of the E' 
states) may be found with the help of equations (4.2) and (5.6) of AliSauskas (1978a) 
(or with the help of (4.14) of Moshinsky et a1 (1975) and (A3.5) of AliSauskas (1984)). 
The analytical inversion of the overlaps of the E +  states found by Asherova and 
Smirnov (1970) (cf AliSauskas 1978a) allowed us to represent the overlaps of I?+ states 
in the following form: 

(Ap)e+ (Ap)e+ 
(K1J-M 1 K2LM) 

(L  - K { )  ! ( L  - K;) ! [ f (p  + K i)] ! [ f (p  + K;)] ! 
( L  + K { )  ! ( L  + K i )  ! [ f ( p  - K ;)I! [f( p - K k ) ]  ! 

(2L - z)! (L  - K ;  - z + 2 ~ ) !  [ f (p  - K;) + X I !  2K;-L+~-2x 

z ! (L - K - z )  ! ( L  - K ;  - z )  ! x ! [f( p + K ; )  - x]  ! 

[ A  - L + i ( p  + K ; )  - x + z +  l]! 
[f( K 1 - K ; )  + X ]  ! [ A + f( p - K ; )  + x + 2]! * 

X (5.13) 

This expression is convenient for small values of p and L. 
The symmetry properties of the resubducing coefficients (see AliSauskas 1978a) 

allows us to find GgFfi)'- as well. 
It should be noted that (5.11) together with (4.1) of AliSauskas (1978a) or (4.13) 

of Moshinsky et a1 (1975) give a new expansion for the Bargmann-Moshinsky states 
in terms of the canonical states. 

6. Conclusion 

We have demonstrated rather unexpected properties of the biorthogonal systems of 
isofactors and resubducing coefficients. The coefficients of the direct and the inverse 
expansion appeared to be related by a special analytical continuation procedure. 

In particular we have demonstrated that the majority of the isoscalar factors of 
SU, ISO, and SU4~SUZxSUz, considered by Aliiauskas (1984), as well as the 
resubducing coefficients of Sp, 3 U2 to Sp, = SU2 x SU,, were some incarnations of a 
certain discrete function, assuming at least three main forms. We succeeded in inversing 
the expansion of the projected Elliott states of SU3 2 SO3 in terms of the canonical 
basis states and in such a way as to extend the possibilities for expansion in terms of 
each other of the different bases of SU3 in addition to those presented by Moshinsky 
et a1 (1975) and AliSauskas (1978a). 

More trivial examples of the analytical inversion symmetry may be found among 
the elementary resubducing coefficients of SU3 =,SO3 (see (4.1) and (4.2) or (4.9) and 
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(4.10) of AliSauskas (1978a)) which form the triangular matrices. This symmetry allows 
us to obtain new expressions for the multiplicity-free isofactors (e.g. the expression 
(9) and (12)-(15) of AliSauskas et a1 (1972) for special isofactors of U, 2 U,-I may 
be related in terms of the analytical inversion symmetry). 

The possibility of obtaining new expressions for isofactors and other transformation 
coefficients is very important in connection with the polynomial representability prob- 
lem (see, e.g., Castilho-AlcarPs and Vanagas 1987). 

We have not exhausted here all the examples of the non-multiplicity-free isofactors 
for which the new symmetry may be useful. The SU, 2 SO, projected basis case is 
considered by Petrauskas and AliSauskas (1987). Some new results are also obtained 
for the SU3 x SU3 2 SU3 case, i.e. for the isofactors of the canonical basis of SU3. The 
reasons for which the analytical inversion symmetry may be ineffective are discussed 
in appendix 1. 

Appendix 1. Discussion of analytical inversion procedure 

Let us discuss some common properties of the discrete functions of the Wigner-Racah 
calculus (isofactors, recoupling or resubducing coefficients or, briefly, WR functions) 
which are important for the analytical inversion procedure as well as for other analytical 
continuation techniques. The WR function for analytical inversion should be represen- 
ted as factorial sums, each separate sum being equivalent, as a rule, to some k + l F k ( l )  

series (with the only known exceptions appearing in Asherova and Smirnov (1970) 
and § 5 ) .  For every WR function the arguments of the simple factorials (or the halves 
of the arguments of double factorials) under the square root sign are especially 
significant parameters because the identical linear combinations of parameters are 
usually simply reproducible from the arguments of factorials depending on the summa- 
tion parameters. Therefore, these arguments are useful when controlling the explicit 
expressions (e.g. the factor [ f ( v - L , )  -x+y] !  in (7.1) of AliSauskas (1984) should be 
corrected to [f( v - 1 2 )  -x+y]!  because the factor ( v  - 1 2 ) ! !  appears under the sign 4, 
and $ ( u - j 2 )  is the sum of z, x - y - z  and f (v- j2) -x+y.  

Naturally, the large majority of factorials under the sign d pass from the numerator 
into the denominator and vice versa for dual WR functions. The renormalisation factor 
is needed for compensation of disturbances from this rule, appearing after analytical 
inversion and formal use of the relation 

(Al . l )  

(cf Jucys and Bandzaitis 1965, 1977). 
Now let us select such linear combinations of parameters from those above men- 

tioned arguments of factorials that the WR function vanishes for any of them taking 
negative integer values, in a similar way as the Clebsch-Gordan or 6j-coefficients of 
SUI do for the negative integer values of j f m or j ,  +j ,  - j 3  (see Regge 1958, Bargmann 
1962, Shelepin 1964). These linear combinations correspond to some branching or 
selection rules and will be called the main Regge-Bargmann-Shelepin type parameters 
(RBSP). For example, the following main RBSP 

( - x -  l)!/( -y -  l ) !  = ( -  l)Y-"y!/x! 

p - A = q - p  $( P - 1 , )  $14 - 1 2 )  f ( b -  L2 - l l + 1 2 )  

L1 - 120 = 110 - L2 

f (LI  - L2+ 1, - 1 2 )  f ( l l +  12 - LI - L2) $(A - 110) h - 120)  (A1.2) 

Ll - 110 = 120 - L2 

are chosen for the dual isofactors represented by (2.2), (2.8) and (3.1). 
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Since the main R B S P  d o  not depend on n this parametrisation may be incomplete. 
For example, the set (A1.2) may be replenished by the following additional RBSP: 

f (  L ,  + L* - I ,  + I,+ n - 4 )  f (  L ,  + L2-k 1 ,  - 12 + n - 4 )  

f (  I ,  + I ,  - L ,  + L* + n - 4 )  
(A1.3) 

which turn into the homogeneous linear combinations of the usual parameters of the 
W R  function for a definite n, similar to the main RBSP.  It should be noted that the 
additional RBSP cannot be negative for positive values of all the main R B S P  parameters. 
The analytical continuation of the W R  function with the negative integer values of the 
several (not single) main R B S P  may be non-vanishing. Otherwise, it should be noted 
that the W R  functions satisfying special boundary conditions vanish for negative values 
of some bilinear combinations which d o  not belong to the RBSP introduced. (We are 
not discussing here the zeros of the W R  functions in the region allowed by branching 
and selection rules.) 

In the explicit expressions of the W R  functions the RBSP may play several different 
roles. 

( a )  The R B S P  is equal to the lengths of an  interval for a summation parameter (or 
parameters) and appears in the numerator under the J sign. 

( b )  The RBSP appears in the denominator under the J sign and may be reproduced 
(re-expressed) similarly as a - b from (a  + z )  !/ ( b  + z )  ! or (a  - z )  ! ( b  - z )  !, where z is 
a summation parameter. (The elimination of the corresponding factors for a = b is 
permitted solely if the summation interval remains unchanged.) 

( c )  The RBSP may be re-expressed similarly as s - a from (a  - z)!/(s + 1 - z )  ! and 
appears in the numerator under the J sign. The W R  function vanishes because the 
special summation formula is valid. 

( d )  The RSBP corresponds to a displacement from Saalschutzian type series (see 
Slater 1966) and may be re-expressed in a more complicated way in comparison with 
other cases. 

The set and the number of the RBSP of type ( a )  determine the convenience of any 
expression for the W R  function and the region of its polynomial representability. The 
analytical inversion procedure exchanges as a rule the roles of RBSP of types ( a )  and 
( b ) .  Therefore, the appearance of RBSP of type ( b )  for each summation parameter 
may be essential for the existence of the analytical inversion symmetry (e.g. this is the 
reason why expression (2.6) of Aliiauskas (1978a) may be not inverted). 

In order to escape the false restrictions of the summation parameters (and associated 
with them the multivaluedness of the functions obtained) it is necessary to be cautious 
to some extent with the analytical inversion of the subfunctions included in the structure 
of the W R  function in a similar way as the Clebsch-Gordan coefficients of SU2 are in 
(5.1 1 ). The region of non-vanishing analytical continuation of the subfunction multi- 
plied by a factor under the J sign may be wider as the corresponding region for the 
analytical continuation of the subfunction alone. Such a situation appears, e.g., with 
the Clebsch-Gordan coefficient of SU2 in the case of analytical inversion of ( 5 . 2 )  of 
Aliiauskas (1984) (see Petrauskas and AliSauskas 1987). 

The following typical difficulties of the analytical inversion should be mentioned. 
(i) When the W R  function is not a completely analytical function because some of 

its parameters accept only a finite set of values. (This note does not concern the 
expressions for isofactors of SU3 3 SO, with special values of the parameter L2 = 0 or 
1 in the general SU, 3 SO, situation.) 
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( i i )  When the WR function depends on two sets of multiplicity labels of irreps, for 
example, the overlap of some non-orthogona! basis when it is expressed as a particular 
case of the corresponding RC without decreasing the number of sums or the overlap 
of the different bases with decreasing cardinality of the common region of non- 
overcompleteness. 

The cardinality of the region of exact completeness seems to be important for the 
analytical inversion in general. Since the analytical inversion of the known explicit 
overlaps (AI A), (0 1 o), ( E  I E )  for SU, 2 SO,, ( n  2 4) was unsuccessful, as well as the 
inversion of ( A  I E ) ,  only the analytical inversion of (0 I E )  together with some methods 
used to prove (5.4) and (7.3) of AliSauskas (1984) allowed us (Petrauskas and Aliiauskas 
1987) to construct the overlaps of the dual bases ( E  1 E ) ,  (Q I Q) and ( A  IA) for the 
two-parametric irreps of SU, 2 SO, ( n  z 3). 

Appendix 2. On the coupling coefficients for the Elliott states 

A well known construction (Engeland 1965, Vergados 1968, Asherova and Smirnov 
1970) allowed us to write an expression for isofactors which couple the Elliott states 
of two irreps (Anpl) and ( A 2 p 2 )  to the Elliott states of the representation ( A p ) :  

K L  

= C [ L ,  L 2  ‘1 ( * , ~ , . M , , E ’ G ( A , ~ , . M , ) € *  
M, M~ K G Z ~ I ~ ; K , L ~  Z212.K2L2 

Zi,Z,,I,, 12.M1.M2 

(A2.1) 

where Z, + Z2 = i p  - s, s = + ( A  I - p ,  + A 2  - p,  - A + p ) .  On the R H S  the Clebsch-Gordan 
coefficients of SU2(S03)  appeared, as well as the special isofactors of SUI 3 U 2 .  Some 
selection rules for the parameters K , ,  K 2  and K of (A2.1) are caused by the vanishing 
of the terms with the parameters 

1 K i  + K ; -  K / >  p ,  + p ? - p  + 2 ~  = f ( 2 A ,  +pl+2A,+p2 -2A - p )  (A2.2) 

where the summation parameters K ; ,  K i  appear in the resubducing coefficients G f t  
on the R H S  of (A2.1). 

Special isofactors of SU3 2 U? on the R H S  (A2.1) take the form (cf Aliiauskas 1978b, 
1982a) 

( A l P I )  (A2CL2) P ( A F )  
211, IpIp 

1 (h ipi )  (A?p:) + ‘“ ‘ ‘+ (Ap)  
; p i p  
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1 ( - l ) i ? - 8 ( f 2 + B ) !  
x -  

( I?- i : ) (  f,+ i:+ 1)( r,- B)! ( iz+  B)! ( B - i?- 1) ! 

(A2.3) 

if the outer multiplicity labels of AliSauskas (1978b) are used. Here 

B = f(pz - A ,  + A ?  - A + I S  1 )  (A2.4) 

zz = ;( p - p , ) - s 

(A2.5) 
a - 6 + c)!(a + 6 - c)!(a  + 6 + c +  l ) !  

( 6 +  c - a ) !  
V(a6c) = 

( I  + z ) ! ( A  + Z  - I ) ! ( A  +z+ I + I ) !  
! ( p - z - l ) ! ( p  - Z + 1 + 1 ) !  

' ( A p I Z )  = (A2.6) 

The factor (. . = 1 for s = 0. The sum over i, reduces to single terms if 

2AI+/~I-A2-2pz+A-p 3 0  (A2.7a 

or 

A I - - 2 A '  - / . ~ 2  + 2 A  + 3 0. (A2.76 

The isofactors (A2.3) satisfy the boundary condition for Z, = I, = $ p , ,  l2 3 B. Therefore, 
they are very convenient for use in the Wigner-Eckart theorem. I n  this situation the 
corresponding boundary values of the matrix elements in the canonical SU, basis may 
be used as the reduced matrix elements. 

The overlaps and the metric tensors (which form the inverse matrices of the overlap 
matrices) for these systems of isofactors are also given by AliSauskas (1978b, 1982a) 
in the form of double sums (see also AliSauskas 1983c) and will be discussed in our 
next paper. 

I t  is not difficult to write an expression for the isofactors which reduce the direct 
product of two Elliott states in terms of the Elliott states of the resulting irrep (see 
(6.5) of AliSauskas 1978a). I t  should be noted that the latter quantities do not coincide 
with (A2.1). The selection rules for the parameters K , ,  K 2  and K are less effective in 
this case, as well as for variants of (A2.1) with a E +  basis particularly replaced by a 
E -  basis. 

Similar selection rules of the multiplicity labels appear for the isofactors of SU, 2 

SO3 which allow us to expand the direct product of the Bargmann-Moshinsky states 
in terms of the same states (cf AliSauskas and NorvaiSas 1985). 
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